Level Sensors & Switches

ELS-1100 Single-Point Level Switch

Part Number: 169555
ELS-1100_142700
Image is of similar product

PRODUCT DESCRIPTION:

ELS-1100 Series Single-Point Level Switch is a compact, economical, no moving parts polysulfone level sensor with built-in switching electronics. A variety of mountings, power requirements and electrical terminations are available. These level switch units are suitable for high, low or intermediate level detection. Installation is simple and quick through the tank top, bottom or side. The sensor offers ±1 mm repeatability and broad liquid compatibility. They are not recommended for use in any liquid that crystallizes or leaves a solid residue.

  • General Purpose
  • Variety of Mountings
  • Economically Priced

Features

  • General Purpose
  • Variety of Mountings
  • Economically Priced 
SKU
169555
Model
ELS-1100
Sensor Type
Electro-Optic
Primary Material Of Construction
Plastic
Wetted Materials
Polysulfone
Stem Material
Polysulfone
Float Material
N/A
Float Diameter
N/A
Actuation Level
N/A
Min. Liquid SG
N/A
Maximum Pressure
150 psi
Minimum Temperature
0°F
Maximum Temperature
176°F
Mounting Size
M12x8g Straight Thread
Mounting Style
Vertical or Horizontal
Electrical Termination
12" Long, 22 AWG, PVC Leads
Switch Type
TTL/CMOS Compatible
Switch Operation
Normally Open (Non-Reversible)
Input
10-28 VDC
Output
Sink 40 mA max, up to 30 VDC

Gems Sensors Instructions, ELS-1100

Format .pdf
Size 56 KB

Electro-Optic Level Switch Product Guide

Format .pdf
Size 148 KB

Gems Sensors Catalog, ELS-1100

Format .pdf
Size 2 MB
  • Food & Bev Equipment
  • Food & Beverage - Automated Water Dispense
  • Food & Beverage - Beverage dispensing
  • Food & Beverage - Other
  • Food & Beverage - Specialty dispensing
  • Food & Beverage - Washers
  • General Industry
  • General Industry - Alarm Panels
  • General Industry - Appliance
  • General Industry - Car Wash Equipment
  • General Industry - Chemical Metering/Injection
  • General Industry - Cleaning Equipment
  • General Industry - Compressors
  • General Industry - Fountains
  • General Industry - Fuel - Handling
  • General Industry - Hydraulics
  • General Industry - Laser Equipment
  • General Industry - Machine Tool
  • General Industry - Machinery
  • General Industry - Maintenance Equipment
  • General Industry - Other
  • General Industry - Plasma Cutting
  • General Industry - Printing - 3D
  • General Industry - Printing Equipment
  • General Industry - Skid Manufacturer
  • General Industry - Test & Measurement
  • General Industry - Test Stands/Systems
  • General Industry - Welders
  • HVAC/R - Air Conditioning Systems
  • HVAC/R - Chillers
  • HVAC/R - Cooling
  • HVAC/R - Cooling Towers
  • HVAC/R - Evaporators
  • HVAC/R - General HVAC
  • HVAC/R - Heating/Condensate Systems
  • HVAC/R - Humidifers
  • HVAC/R - Other
  • HVAC/R - Refrigeration
  • HVAC/R Equipment
  • Medical - Analytical Instruments
  • Medical - Dermatology
  • Medical - Imaging
  • Medical - Immunochemistry
  • Medical - IVD
  • Medical - Lab
  • Medical - Laboratory & Testing
  • Medical - Life Sciences
  • Medical - Medical Lasers
  • Medical - Other
  • Medical - Radiology
  • Medical - Renal Care / Dialysis
  • Medical - Respiratory Equipment
  • Medical Equipment
  • Off Highway Vehicles
  • OHV - Agricultural Equipment
  • OHV - Highway Construction Equipment
  • OHV - Industrial Equipment
  • OHV - Lawn Equipment
  • OHV - Material Handling
  • OHV - Military Vehicles
  • OHV - Mining Equipment
  • OHV - Other
  • OHV - Recreational Vehicles
  • OHV - Specialty Equipment
  • Oil & Gas - Analytical Equipment
  • Oil & Gas - Compressed/Liquified Nat. Gas
  • Oil & Gas - Drilling Equipment
  • Power Gen Equipment
  • Power Generation - Fuel Cell
  • Power Generation - Generators
  • Power Generation - Other
  • Specialty Vehicles
Will different liquid media affect the time delay for optic sensors?

If the viscosity is similar, the time delay should be the same for different media.

What is the difference between "sinking" and "sourcing?"

Sinking and sourcing are terms used to describe how an associated load (the device being turned on or off by the sensor) is powered in relation to the sensor. Sinking, the more widely used of the two, involves the switching of load current (power) supplied by a power source external to the sensor. In a sinking configuration, current passes through the load first, through the output switch of the sensor second and lastly to ground. A sensor with a sinking output switches the ground, or negative, leg of the circuit. In contrast, sourcing refers to a configuration in which the sensor is the source of the current required to power the load. In a sourcing situation, current supplied by the sensor passes through the load second and then to ground. A sensor with a sourcing output switches the positive leg of the circuit.

Can you connect more than one 12 volt Sinking Electro Optic Sensor to the Opto Pak Controller?

The Opto-Pak controller was designed for just one relay output. However, when using 12 VDC Electro Optics in parallel with one Opto-Pak controller Part# 149536 or 149535 with Nema4X Enclosure, the following is possible: Maximum capability: 100Ma Maximum optic sensors: 4 For multiple sensors wired in parallel to one Opto pak Controller, the sensors will exhibit logical OR operation: Dry Sink sensors: if any sensor is dry, the Opto Pak Controller relay will be energized, and all sensors would have to be wet to de-energize the relay. Wet Sink sensors: if any sensor is wet, the Opto Pak Controller relay will be energized, and all sensors would have to be dry to de-energize the relay.

Does Gems offer an optic sensor with a time delay?

For large volume OEM applications, a custom time delay is available on the programmable microprocessor version of the ELS-1150, which can be programmed for on, off or both delays from 2 seconds to 255 seconds. All delays have a ±1 second tolerance. Call Gems for more information.

Is there a preferred mounting position for the ELS-1150 and ELS-1150XP Optical sensor?

These sensors must be mounted horizontally or up to 45 degrees from horizontal only. Reason, possible drips on tip can cause false indication. Also do not want to create air pockets.

What is the diode part number that is referenced for inductive loads per the wiring diagram for an Optic sensor?

Reference Diode part# 1N4004, (400V peak input voltage)